java实现spark streaming与kafka集成进行流式计算
- 2017/6/26补充:接手了搜索系统,这半年有了很多新的心得,懒改这篇粗鄙之文,大家看综合看这篇新博文来理解下面的粗鄙代码吧,。
- 背景:网上关于spark streaming的文章还是比较多的,可是大多数用scala实现,因我们的电商实时推荐项目以java为主,就踩了些坑,写了java版的实现,代码比较意识流,轻喷,欢迎讨论。
- 流程:spark streaming从kafka读用户实时点击数据,过滤数据后从redis读商品相似度矩阵,从db读user历史行为,实时计算兴趣度,并将结果写入redis一份,供api层读取展示,写入hdfs一份供离线计算准确率召回率。
- 补充:据了解,大型实时推荐系统里面,协同过滤一般用作生成候选集,计算兴趣读会被ctr等策略的 rerank代替,在calculateinterest中调用在线rerank服务排序。
-
12/13补充:召回不变,目前采用ctr预估加上规则排序,后续上ltr。
-
废话少说,上代码:
public class Main { static final String ZK_QUORUM = "*.*.*.*:2181,*.*.*.*:2181,*.*.*.*:2181/kafka"; static final String GROUP = "test-consumer-group"; static final String TOPICSS = "user_trace"; static final String NUM_THREAD = "64"; public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("main.java.computingCenter"); // Create the context with 2 seconds batch size //每两秒读取一次kafka JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000)); int numThreads = Integer.parseInt(NUM_THREAD); MaptopicMap = new HashMap (); String[] topics = TOPICSS.split(","); for (String topic: topics) { topicMap.put(topic, numThreads); } JavaPairReceiverInputDStream messages = KafkaUtils.createStream(jssc, ZK_QUORUM, GROUP, topicMap); JavaDStream lines = messages.map(new Function , String>() { public String call(Tuple2 tuple2) { return tuple2._2(); } }); JavaDStream words = lines.flatMap(new FlatMapFunction () { public Iterable call(String lines) { //kafka数据格式:"{\"Topic\":\"user_trace\",\"PartitionKey\":\"0\",\"TimeStamp\":1471524044018,\"Data\":\"0=163670589171371918%3A196846178238302087\",\"LogId\":\"0\",\"ContentType\":\"application/x-www-form-urlencoded\"}"; List arr = new ArrayList (); for (String s : lines.split(" ")) { Map j = JSON.parseObject(s); String s1 = ""; String s2 = ""; try { s1 = URLDecoder.decode(j.get("Data").toString(), "UTF-8"); s2 = s1.split("=")[1]; } catch (UnsupportedEncodingException e) { e.printStackTrace(); } arr.add(s2); } return arr; } }); JavaPairDStream goodsSimilarityLists = words.filter(new Function () { @Override public Boolean call(String s) throws Exception { //过滤非法的数据 if (s.split(":").length == 2) { return true; } return false; } }).mapPartitionsToPair(new PairFlatMapFunction , String, String>() { //此处分partition对每个pair进行处理 @Override public Iterable > call(Iterator s) throws Exception { ArrayList > result = new ArrayList >(); while (s.hasNext()) { String x = s.next(); String userId = x.split(":")[0]; String goodsId = x.split(":")[1]; System.out.println(x); LinkedHashMap recommendMap = null; try { //此service从redis读数据,进行实时兴趣度计算,推荐结果写入redis,供api层使用 CalculateInterestService calculateInterestService = new CalculateInterestService(); try { recommendMap = calculateInterestService.calculateInterest(userId, goodsId); } catch (Exception e) { e.printStackTrace(); } String text = ""; int count = 0; for (Map.Entry entry : recommendMap.entrySet()) { text = text + entry.getKey(); if (count == recommendMap.size() - 1) { break; } count = count + 1; text = text + "{/c}"; } text = System.currentTimeMillis() + ":" + text; result.add(new Tuple2 (userId, text)); } catch (Exception e) { e.printStackTrace(); } } return result; } }); goodsSimilarityLists.foreachRDD(new Function , Void>() { @Override public Void call(JavaPairRDD rdd) throws Exception { //打印rdd,调试方便 System.out.println(rdd.collect()); return null; } }); JavaPairDStream goodsSimilarityListsText = goodsSimilarityLists.mapToPair(new PairFunction , Text, Text>(){ @Override public Tuple2 call(Tuple2 ori) throws Exception { //此处要将tuple2转化为org.apache.hadoop.io.Text格式,使用saveAsHadoopFiles方法写入hdfs return new Tuple2(new Text(ori._1), new Text(ori._2)); } }); //写入hdfs goodsSimilarityListsText.saveAsHadoopFiles("/user/hadoop/recommend_list/rl", "123", Text.class, Text.class, SequenceFileOutputFormat.class); jssc.start(); jssc.awaitTermination(); }}
public class CalculateInterestService { private String dictKey = "greate_item_sim_2.0"; private String recommendTable = "great_recommend_table_2.0"; static final String HIGO_BASE_URL = "jdbc:mysql://*.*.*.*:3212/*"; static final String HIGO_BASE_USER = "*"; static final String HIGO_BASE_PASS = "*"; public LinkedHashMapcalculateInterest(String userId, String traceGoodsId) { LinkedHashMap sortedMap = new LinkedHashMap (); String[] simGoods = RedisHelper.getInstance().hget(dictKey, traceGoodsId).split(","); //用户的历史记录,应该存action:goodsId:timestamp格式,要重构,bi写入单独的数据表中 HashMap userTrace = null; try { userTrace = getUserTrace(userId); } catch (ClassNotFoundException e) { e.printStackTrace(); return sortedMap; } HashMap recommendMap = new HashMap (); String[] simGoodsIds = new String[simGoods.length]; for (int i = 0; i < simGoods.length; i++) { simGoodsIds[i] = simGoods[i].split(":")[0]; } List pSimGoodsIds = RedisHelper.getInstance().hmget(dictKey, simGoodsIds); HashMap predictSimGoodsIds = new HashMap (); for (int i = 0; i < simGoodsIds.length; i++) { predictSimGoodsIds.put(Long.parseLong(simGoodsIds[i]), pSimGoodsIds.get(i)); } for (String item : simGoods) { //need optimised Double totalSum = 0.0; Double sum = 0.0; Long originGoodsId = Long.parseLong(item.split(":")[0]); for (String predictGoods : predictSimGoodsIds.get(originGoodsId).split(",")) { Long goodsId = Long.parseLong(predictGoods.split(":")[0].toString()); Double sim = Double.valueOf(predictGoods.split(":")[1].toString()); totalSum = totalSum + sim; Double score = 0.0; if (!userTrace.containsKey(goodsId)) { //TODO 用户评分矩阵过于稀疏,需要svd补充评分,暂时无评分score为默认0.1 userTrace.put(goodsId, "default"); } String action = userTrace.get(goodsId); if (action.equals("click")) { score = 0.2; } else if (action.equals("favorate")) { } else if (action.equals("add_cart")) { score = 0.6; } else if (action.equals("order")) { score = 0.8; } else if (action.equals("default")) { score = 0.1; } //相似度词典应存 goodsid:sim格式,要重构 sum = sum + score * sim; } Double predictResult = sum / totalSum; recommendMap.put(originGoodsId, predictResult); } //sort recommend list List > list = new ArrayList >(recommendMap.entrySet()); Collections.sort(list, new Comparator >() { @Override public int compare(Map.Entry o1, Map.Entry o2) { return o2.getValue().compareTo(o1.getValue()); } }); Map.Entry tmpEntry = null; Iterator > iter = list.iterator(); while (iter.hasNext()) { tmpEntry = iter.next(); sortedMap.put(tmpEntry.getKey(), tmpEntry.getValue()); } writeRecommendListToRedis(userId, sortedMap); return sortedMap; } private HashMap getUserTrace(String userId) throws ClassNotFoundException { //SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc); Class.forName("com.mysql.jdbc.Driver"); PreparedStatement stmt = null; Connection conn = null; UserTrace userTrace = new UserTrace(); try { conn = DriverManager.getConnection(HIGO_BASE_URL, HIGO_BASE_USER, HIGO_BASE_PASS); String sql = "select * from t_pandora_goods_record where account_id=" + userId; stmt = (PreparedStatement)conn.prepareStatement(sql); ResultSet rs = stmt.executeQuery(); while(rs.next()) { userTrace.setId(Long.parseLong(rs.getString(1))); userTrace.setAccountId(Long.parseLong(rs.getString(2))); userTrace.setGoodsIds(rs.getString(3)); userTrace.setMtime(rs.getString(4)); } stmt.close(); conn.close(); } catch (Exception e) { e.printStackTrace(); } String[] goodsActionTimestamp = userTrace.getGoodsIds().split(","); HashMap hm = new HashMap (); for (String ac : goodsActionTimestamp) { Long goodsId = Long.parseLong(ac.split(":")[0]); //String action = ac.split(":")[1]; //String timestamp = ac.split(":")[2]; //hack 下一步要bi把用户历史行为写入表中, action:goodsId:timestamp格式, timestamp后期将参与权重计算 String action = "click"; hm.put(goodsId, action); } return hm; } private void writeRecommendListToRedis(String userId, LinkedHashMap sortedMap) { String recommendList = ""; int count = 0; for (Map.Entry entry : sortedMap.entrySet()) { recommendList = recommendList + entry.getKey(); if (count == sortedMap.size() - 1) { break; } count = count + 1; recommendList = recommendList + ","; } RedisHelper.getInstance().hset(recommendTable, userId, recommendList); }}